SECONDARY METABOLITES FROM Hedysarum setigerum

O. V. Neretina,¹ A. S. Gromova,¹ V. I. Lutskii,¹ A. A. Semenov,¹ I. A. Ushakov,¹ T. N. Makar'eva,² and N. L. Owen³

UDC 547.972:543.429:543.51

We previously reported the isolation of five flavonoids from the aerial part of *Hedysarum setigerum*. These included isorhamnetin, avicularin, roifolin, linarin, and diosmin [1]. In continuation of the study of secondary metabolites of *H. setigerum* to find antiviral agents, we isolated another six flavonoids and four sterols.

A precipitate containing two flavonoids formed upon standing in the aqueous methanol extract [1]. The precipitate was separated and chromatographed over silica gel (CHCl₃:CH₃OH:H₂O, 100:2:1) and polyamide (30% CH₃OH). Compounds **1** and **3** were isolated in this manner. The fraction obtained via chromatography of the butanol extracts over polyamide [1] (60-70% CH₃OH) was treated repeatedly with acetone. Chromatography over silca gel isolated **2** from the acetone-soluble fraction (CHCl₃:CH₃OH, 98:2) and **4** from the acetone-insoluble fraction (CHCl₃:CH₃OH:H₂O, 70:12:1). The fraction produced by elution of the butanol extracts over polyamide (15-35% CH₃OH) underwent flash chromatography over silica gel (CHCl₃:CH₃OH:H₂O, 70:23:4-63:23:3) and afforded two fractions enriched in flavonoids. Fraction 1 was chromatographed successively over silica gel (CHCl₃:CH₃OH:H₂O, 70:23:1), polyamide (33% CH₃OH), and Sephagel (DEAE in the OH⁻ form, 15% CH₃OH). This produced **6**. Fraction 2 was chromatographed repeatedly over silica gel (CHCl₃:CH₃OH:H₂O, 100:30:2) to isolate **5**.

Quercetin (1): mp 302°C (Et₂O). Mass spectrum (FAB⁺, m/z; I_{rel} , %): 303 (46) [M + H]⁺, 302 (13) [M]⁺. Mass spectrum (HR-FAB): found [M + H]⁺ 303.050; cald. for C₁₅H₁₁O₇, 303.0500.

3-O-Methylkaempferol (2): mp 270-272°C (EtOH). Mass spectrum (FAB⁺, m/z; I_{rel} , %): 389 (5) [M - 3H + 4Na]⁺, 323 (15) [M + Na]⁺, 261 (100) [M - 3H - 4Na - 2H₂O]⁺. Mass spectrum (HR-FAB): found [M + Na]⁺ 323.053; cald. for C₁₆H₁₂O₆Na, 323.0528.

Quercitrin (3): mp 181-183°C (CH₃OH). Mass spectrum (FAB⁺, m/z; I_{rel} , %): 449 (9) [M + H]⁺, 303 (40) [M + H - Rha]⁺, 263 (100) [M + H - C₇H₄O₄ - 2OH]⁺. Mass spectrum (HR-FAB): found [M + H]⁺ 449.108; cald. for C₂₁H₂₁O₁₁, 449.1080.

Kaempferol-3-O-*α*-**L**-arabinofuranoside (4): mp 226-227°C (CH₃OH). Mass spectrum (FAB⁺, m/z; I_{rel} , %): 463 (8) [M - H + 2Na]⁺, 441 (4) [M + Na]⁺, 413 (100) [M + Na - CO]⁺, 315 (8) [M - H + 2Na - OAra]⁺. Mass spectrum (HR-FAB): found [M + Na]⁺ 441.080; cald. for C₂₀H₁₈O₁₀Na, 441.0798.

Rutin (5): mp 190-192°C (EtOH). Mass spectrum (FAB⁺, m/z; I_{rel} , %): 655 (13) [M - H + 2Na]⁺, 633 (12) [M + Na]⁺, 301 (77) [M - H - Glc - Rha]⁺. Mass spectrum (HR-FAB): found [M + Na]⁺ 633.143; cald. for C₂₇H₃₀O₁₆Na, 633.1428.

Neobudofficide (6): mp 180-182°C (CH₃OH), $[\alpha]_D^{14}$ -57.06° (*c* 0.17, EtOH). Mass spectrum (FAB⁺, *m/z*; *I*_{rel}, %): 761 (6) [M + Na]⁺, 727 (5) [M + Na - 2OH]⁺, 273 (22) [M + Na - 2OH - 2Rha - Glc]⁺. Mass spectrum (HR-FAB): found [M + Na]⁺ 761.228; found for C₃₄H₄₂O₁₈Na, 761.2268. For the PMR and ¹³C NMR, see Table 1.

All physicochemical constants of **1** [2], **2** [3], **3-4** [4], and **6** [5] and spectral data (PMR and ${}^{13}C 2D$) agreed with the literature data for these compounds [5, 7].

Compounds 2, 4, and 6 were obtained for the first time from plants of the *Hedysarum* genus. The isolation of neobudofficide, 5,7-dihydroxy-4'-methoxyflavone 7-O- α -L-rhamnopyranosyl-(1 \rightarrow 6)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranoside, is the first observation of this compound in nature [5, 6].

¹⁾ State Technical University, 664074, Irkutsk, ul. Lermontova, 83, e-mail: lps@irk.ru; 2) Pacific Institute of Bioorganic Chemistry, 690022, Vladivostok, ul. 100-letiya Vladivostoka, 159; 3) Department of Chemistry, Brigham Young University, Provo, UT, 84602, USA. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 79-80, January-February, 2004. Original article submitted December 24, 2003.

Atom	6		A.,		6	
	¹³ C	$^{1}\mathrm{H}$	Atom		¹³ C	$^{1}\mathrm{H}$
2	164.4	6.9 (s)		1″	99.8	5.7 (d, 7.5)
3	104.6			2″	77.5	4.5 (m)
4	182.6			3″	79.1	4.4 (m)
5	162.6		Gle	Gic 4"	72.6	4.5 (m)
6	100.6	6.3 (d, 1.8)		5″	77.3	4.1 (m)
7	163.7			6″	67.3	4.7, 4.0 (m)
8	95.1	6.7 (d, 1.8)		1‴	102.3	6.4 (d, 1.2)
9	157.7		Rha (2)	2""	72.3*	4.8 (m)*
10	106.7			3'''	72.6*	4.5 (m)*
1'	124.1			۵ ″″	73.9	4.3 (m)
2'	128.6	7.9 (dd, 8.8, 1.9)		 5'''	69.8	4.8 (m)
3'	114.9	7.2 (dd, 8.8, 1.9)		5 6'''	19.2	1.9 (d, 6.2)
4'	162.9				102.4	5.5 (d, 1.2)
5'	114.9	7.2 (dd, 8.8, 1.9)		1''''	71.9*	4.6 (m)*
6'	128.6	7.9 (dd, 8.8, 1.9)		2‴″	71.2*	4.0 (m)*
-OH (5)		13.4 (s)	Rha (6)	3""	73.9	4.2 (m)
-OCH ₃	55.4	3.7 (s)		4''''	69.7	4.3 (m)
				5‴′′ 6 ^{‴″}	18.2	1.6 (d, 6.2)

TABLE 1. PMR and ¹³C NMR Data for Neobudofficide (6) (250 MHz, C_5D_5N , δ , ppm, J/Hz)

*Alternate signal assignment.

Flash chromatography of the CHCl₃ fraction [1] over silica gel (C_6H_6) isolated the sterol fraction (0.09% of dry mass). GC-MS of the acetate derivatives identified campesterol (11.7%), stigmasterol (14.1%), β -sitosterol (69.2%), and stigmastanol (4.2% of the fraction mass).

REFERENCES

- 1. O. V. Neretina, A. S. Gromova, V. I. Lutskii, and A. A. Semenov, Rastit. Resur., No. 1, 82 (2002).
- 2. V. A. Kurkin, V. B. Braslavskii, G. G. Zapesochnaya, and V. O. Tolkachev, *Khim. Prir. Soedin.*, 548 (1990).
- 3. E. Wollenweber and K. Egger, *Tetrahedron Lett.*, **19**, 1601 (1970).
- 4. W. Karrer, *Konstitution und vorkommen der organischen pflanzenstoffe*, Birkhauser Verlag Basel, Stuttgart (1958).
- 5. J. S. Li, Y. Y. Zhao, B. Wang, X. L. Li, and I. B. Ma, Acta Pharm. Sin., 31, No. 11, 849 (1996).
- 6. Y.-H. Liao, P. J. Houghton, and J. R. S. Hoult, J. Nat. Prod., 62, No. 9, 1241 (1999).
- 7. K. R. Markham, B. Ternai, R. Stanley, H. Geiger, and T. J. Mabry, *Tetrahedron*, **34**, 1389 (1978).